首页 > 汽车自驾 > 汽车自驾 > 芯趋势丨存算一体,AI计算的最优解?

芯趋势丨存算一体,AI计算的最优解?

发布时间:2024-08-09 16:15:02来源: 15210273549

随着人工智能与大数据技术的飞速发展,我们正步入一个以大模型为核心的新时代。然而在这一浪潮中,传统的冯·诺依曼架构却逐渐显露出其狭隘性。

该架构虽然奠定了现代计算机的基础,但在面对海量数据处理与大模型训练时,却受限于存储与计算分离的设计,导致数据搬运成为性能瓶颈,严重制约了计算效率的提升。

为了突破这一瓶颈,业界开始将目光聚焦于另一个计算架构——存算一体,这是一种将存储和计算功能融合在同一个芯片上的技术架构。

事实上,存算一体的概念由来已久。早在1969年,斯坦福研究所的Kautz等人提出了存算一体计算机的概念。但受限于当时的芯片制造技术和算力需求的匮乏,那时存算一体仅仅停留在理论研究阶段,并未得到实际应用。

而近年来,随着半导体制造技术突破,以及AI等算力密集应用场景的崛起,存算一体技术也得到迅猛发展。2017年,英伟达、微软、三星等提出存算一体原型,随后,国内也诞生一批存算一体芯片企业,苹芯科技是其中之一。

8月8日,苹芯科技正式发布了两款新品,包括存算一体NPU“PIMCHIP-N300”和多模态智能感知芯片“PIMCHIP-S300”,后者采用的是28纳米制程工艺。

苹芯科技CEO杨越在接受21世纪经济报道记者采访时指出,“存算一体就是要在成熟制程实现高级制程的计算能力,这让我们不用非去卷高级制程”。

打破冯·诺依曼架构

在存算一体技术出现之前,计算架构基本都是遵循冯·诺依曼架构,即存储与计算单元分离。

杨越向记者表示,在冯·诺依曼架构下,当计算发生时,数据需要在存储和计算单元直接传输。而在AI算力芯片中,超过90%的功耗都消耗在传输上,所以原来的架构在计算效率上很难支撑AI的发展。

此前,提高计算效率的办法就是升级制程工艺,从最初的65纳米、40纳米已经变成7纳米、5纳米甚至3纳米。然后,这种方法后来也遭遇了瓶颈。

因此2020年前后,国内出现一批公司,他们试图从其他维度去解决计算效率提升的问题。“比如存算一体公司、量子计算公司、光子芯片公司等,这些公司希望去改变芯片的架构来减少数据的搬移。而在不同的技术路径中,存算一体是落地性最强的一个赛道”。杨越说。

在存算一体赛道中,不同公司也存在差异,主要是底层所采用的Memory(存储器)类型不同。有的是用flash做,有的是用静态随机存储器(SRAM)做,还有的是用新型存储器——忆阻器来做。

杨越告诉记者,不同的Memory所具有的特性不同,有的密度高,有的耐久性更好。而苹芯科技选择SRAM,是因为它的产品化能力最强。

“在用户最关心的几个性能维度上,比如读写的延时、耐久性、Memory可擦写的次数、高级制程兼容性等,SRAM的表现都是最优的。另外,因为SRAM在计算机体系中已经存在几十年了,它的成本、良率都很稳定。所以如果想要快速产品化,SRAM会是最优的解决方案”。杨越表示。

另外,即便是使用同一种Memory来做的企业,面向的场景也可能不同。有些公司选择了大算力场景,比如汽车、服务器,苹芯科技选择的则是小端侧场景,比如智能可穿戴设备、智慧家居等。

杨越称,选择小端侧场景,是因为算力整体并不是特别大,但是对于功耗的要求又比较敏感。“做出这一选择,我们是从电路、系统架构、应用、成本等角度进行了综合考量,觉得小端侧场景更适合快速出产品”。

他举例说,“我们团队的背景之前都是做新型存储器的,但我们仍然采用SRAM方案,核心原因就是我们认为这个方案在2-3年内可以产品化,这是符合投资人商业逻辑的,也是符合产业商业逻辑的”。

大厂留下的机会

目前,包括英特尔、三星、IBM、AMD等在内的传统芯片厂商都在布局存算一体,苹芯科技等初创公司如何应对与巨头的竞争?

杨越表示,从行业角度,大家做的事情是趋同的,就是希望让数据的搬运彻底消失。包括苹芯科技在内的一些初创公司,其优势在于选择了存内计算方案,这几乎能将缩短数据距离这件事做到极致化。但大厂们不太可能去这样做,因为他们要考虑通用性的问题,这实际上也为创业公司提供了机会。

据记者了解,存算一体技术可分为三类:近存计算(Processing Near Memory, PNM)、存内处理(Processing In Memory, PIM)和存内计算(Computing In Memory, CIM)。

其中,近存计算是利用先进的封装技术,将计算芯片和存储器封装到一起,通过减少内存和处理单元之间的路径,提高传输效率;存内处理侧重于将计算过程尽可能地嵌入到存储器内部,减少处理器访问存储器的频率;存内计算则是将计算和存储完全融合的技术,通过电路革新或集成额外的计算单元来实现。

因为存内计算对制程工艺要求不高,所以这也是国内创业公司主要选择的技术路径。华西证券在一份研报中指出,近存计算的代际设计成本较低,适合传统架构芯片转入,目前该技术已经十分成熟,被广泛应用于各类CPU和GPU上。而存内计算主要用于算法固定的场景算法计算。

杨越指出,目前电子产品正朝着小型化、智能本地化的方向发展,这给存算一体创业公司带来了很大的市场机遇。

“小型化意味着电池不能做得太大,然后还要去很好地驱动AI计算,这在传统架构中很难实现。比如现在基于传统架构的一些智能设备,当它们打开AI功能时,非常容易发热,原因在于有大量的数据搬运,而存算一体可以将产品体验变得更好”。他说。

据杨越介绍,苹芯科技的产品未来会有两个迭代方向,一是在功能上,要从现在的卷积神经网络(CNN)迭代到Transformer模型,二是在计算效率上,会把制程工艺从现在的28纳米,升级到22纳米、14纳米,最终定格在12纳米。

汽车自驾更多>>

问界M9:新时代笋,穿透旧秩序的壳 奥迪2024年度总销量出炉,竟然已不敌特斯拉 家用suv选购指南:能耗、空间、配置等到底该如何考量? 特斯拉推新车火的却是小米?焕新Model Y上市 售26.35万起 袁小林与沃尔沃汽车:在挑战中稳健前行,向未来大步迈进 限量500辆 斯巴鲁WRX STI S210发布 奇瑞2024营收4800亿出口114万辆,2025有哪些惊喜? 什么原因让EV3成为小型纯电SUV的标杆? 宝骏享境行政版亮相:黑色外观+双十幅轮毂,纯电/插混动力升级 日本2024年电动汽车销量四年来首次下跌 10分钟续航350km!上汽通用携手宁德时代推出6C超快充电池 智能化引领车载语音市场新格局,AI大模型成为市场关键驱动力 丰田计划2030年重组日本生产体系,应对人口减少挑战 夜间120km/h跑高速突遇逆行车 理想AES紧急变道救车主一命 现代汽车向特朗普就职基金捐赠100万美元 鸿蒙智行问界M8实车图曝光 北汽集团2024年销售超171万辆 在京产值增长6.7% 稳中求进 “韧性”向前 东风Honda2024年以硬核实力赢得全球用户信赖 双龙出海,比亚迪汉L、唐L开启民用车1000马力时代 139款车型成功通过汽车数据安全合规检测 小米SU7目标冬季电车之王,冬季实测表现如何? 微博年度汽车大选出炉 帕萨特 Pro荣膺“年度最具心智车型” 设计看齐汉L,轴距比秦L DM-i长,还有智驾,比亚迪秦L EV稳了 宁德时代放大招,巧克力换电站能打破蔚来的垄断格局吗? 10万出头买新车,埃安UT与比亚迪海豚,你会怎么选? 国民小跑车杰迪K333即将上市,全新配色亮相 16.69万降到11.99万,指导价降4.7万,长安启源A07典藏版更香? SUV市场格局都可能被撼动,MPV比亚迪夏正式上市24.98—30.98万元 福特游骑侠Ranger,车长近5米4,标配2.3T,对标长城炮 没买车的朋友有福了,五菱1月购车政策出炉,国补地补全兜底!